
Journal of Statistical Physics, Vol. 42, Nos. 1/2, 1986 

Diffusion-Influenced Reactions 

R. I. Cukier 

Received July 11, 1985 

We summarize three of our recent results on diffusion-influenced reactions in 
solutions. All deal with the concentration dependence of the reaction rate when 
the reactants must first diffuse together before reaction can occur. When one 
species (the sink species) is not dilute, the rate cannot be obtained by solution 
of a pair diffusion equation; the correlations among the sinks for the diffusing 
species must be accounted for. First, we consider fluorescence quenching when 
the quenchers are not dilute. For charged quenchers and fluorophores we dis- 
cuss how the solution dielectric constant and ionic strength can strongly 
influence the deviations from the linear Stern-Volmer behavior (the dilute sink 
result) which arise due to the sink correlations. Second, we consider 
heterogeneous catalysis where a reactive species is adsorbed onto a surface and 
must surface diffuse to reactive sites (the sinks). We find that surface diffusion 
can be an important factor contributing to the rate of reaction; especially when 
surface diffusion is rapid relative to the adsorption/desorption rate. Third, we 
discuss diffusion influenced reactions with sinks which are long ellipsoids. Dilute 
long ellipsoids provide a large rate enhancement relative to a spherical sink; we 
show that this rate enhancement survives when nondilute ellipsoids are con- 
sidered. 

KEY WORDS: Diffusion-influenced reactions; chemical reactions; surface 
diffusion; fluorescence quenching. 

1. I N T R O D U C T I O N  

T h e  r a t e  of  a b i m o l e c u l a r  r e a c t i o n  in  s o l u t i o n  c a n  be  l i m i t e d  by  t he  dif- 

f u s i o n  of  t h e  r e a c t a n t  species  to  t h e i r  e n c o u n t e r  d i s t a n c e .  F o r  e x a m p l e ,  

S m o l u c h o w s k i  (n2) o b t a i n e d  t he  d i f fu s ion  c o n t r o l  r a t e  c o n s t a n t  k ~  ) = 4~Da,  

w h e r e  D is t he  s u m  of  t he  r e a c t a n t  d i f fu s ion  coef f ic ien t s  a n d  a is t h e i r  

e n c o u n t e r  s e p a r a t i o n  w h e r e  t h e  r e a c t i o n  c a n  occur .  W h e n  o n e  of  t he  

species  is n o t  d i lu te ,  t he  r a t e  coef f ic ien t  d e p e n d s  o n  i ts  c o n c e n t r a t i o n .  W e  
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will call the nondilute species sinks, and l~t kD(C) designate the diffusion 
control reaction rate constant as a function of sink number density c. The 
modification of the reactive density field of the dilute species arising from 
the nondilute sinks is responsible for the concentration dependence of kD. 

If the reaction were activation controlled, that is, if the rate of dif- 
fusion were slow with respect to the intrinsic rate of reaction (the rate when 
the reactants are at their encounter separation), then homogeneous kinetics 
would prevail. In homogeneous kinetics, diffusion is so fast relative to the 
rate of reaction at the encounter separation that the bulk reactive density is 
maintained throughout the solution. Therefore, the bimolecular rate con- 
stant would be independent of sink concentration. 

We will designate the intrinsic bimolecular rate constant (at encounter 
separation a) by ko and the overall bimolecular rate constant by k s. Thus, 
for example, kf  is the rate constant for the process 

A + B  ks, C (1.1) 

where A and B must first diffuse together to separation a and then they 
may react, with rate constant ko. For dilute reactants 

k~O~ = kok~)/(ko + k(~ )) (1.2) 

For  nondilute sinks, kr will be little changed from k} ~ for v = ko/k~ ) very 
small (activation control) but substantially changed for v ~ vo (diffusion 
control). 

In this paper we summarize our efforts in three areas where these con- 
centration effects are important. 

First, we consider the dependence on quencher concentration of 
fluorescence quenching. With reference to Eq. (1.1), A would be an excited 
fluorophere A* and B a quencher Q. When the quenchers are not dilute 
deviations from the Stern Volmer (4t (SV) linear dependence of fluoresence 
inverse lifetime on quencher concentration are expected. Quenching of 
charged reactants leads to deviations from linear SV behavior that depend 
on the solution ionic strength and dielectric constant. Our theoretical 
development identifies a length a that controls the deviations from SV 
behavior through an effective volume fraction ~=4~a3c/3,  with c the 
quencher concentration. This length ~ depends on the solution's dielectric 
constant and ionic strength and can be much greater than a, the encounter 
separation. Therefore deviations from the linear SV result can occur at 
much lower quencher concentration then would be predicted on the basis 
of the quencher material volume fraction ~b = 4~a3c/3. 
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Second, we discuss reactions that can occur on surfaces. In 
heterogeneous catalysis reaction occurs at specific surface features such as 
steps and kinks. (5/ 

The diffusing species must first be adsorbed onto the surface and then 
it surface diffuses to the sites where reaction occurs. This problem has a 
strong two-dimensional flavor, even though the third dimension is present 
via an adsorption/desorption step, and displays some of the behavior per- 
culiar to two-dimensional systems. 

Third, we investigate the problem of nondilute sinks where the sinks 
are long ellipsoids. In DNA-repressor interactions it has been suggested (6'7/ 
that a diffusing species locates a target site on the DNA molecule by a two- 
step process: first, diffusing and binding nonspecifically to the DNA and 
second, sliding along the DNA surface to the target site. This leads to a 
model of a long thin sink (a long ellipsoid), the DNA, acting as a reactive 
sink for the diffusing repressor species. We show that because such a sink 
acts as if it were a reactive sphere of radius corresponding to the long ellip- 
soid axis, the sinks can appear to be nondilute even when they are dilute 
materially. Therefore, the sink concentration dependence of the rate con- 
stant must be accounted for even for materially dilute DNA solutions. 

The problem of nondilute sinks was addressed by several authors (8 15~ 
in the context of the following model; a set of stationary, spherical, ran- 
domly distributed sinks in a solution with a diffusing species which reacts 
irreversibly and instantaneously on encounter with a sink. 

We introduced two basic techniques for addressing this problem. First, 
a perturbative expansion with its origin in the multiple scattering expan- 
sion method used in diverse many-body problems./j~ Here, the rate coef- 
ficient is expressed as a sum over all possible "scatterings" of the diffusive 
propagator G o (the inverse of the diffusion operator Do V2, where Do is the 
diffusion coefficient in the absence of the sinks) among the sinks. When this 
is done divergent integrals arise due to the long range of Go~ 1/r. Sum- 
mation of infinite sequences of scattering events before the spatial integrals 
are carried out leads to finite results but k s is found to be a nonanalytic 
function of sink concentration c. An analogous effect arises in the 
Debye-Hiickel theory of electrolytes(~6); the tong-range Coulomb interac- 
tion leads to divergences and, when these are removed, properties such as 
the conductance depend on the square root of the ionic strength ~ x ~ '  
Diagrammatic methods are useful when such infinite summations are 
required. 

In order to provide a rigorous, systematic method of assigning an 
order to the various diagrams that appear in the multiple scattering expan- 
sion, we used a scaling expansion method. (131 This method was developed 
by Mori (~7) and permits one to derive macroscopic transport equations by 
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a space-time coarse graining of the microscopic process. The method 
ensures that the expansion in space gradients and time scales required to 
obtain a macroscopic (averaged over the distribution function of sinks) 
transport equation is carried out consistently with the expansion in sink 
concentration. All diagrams can be assigned an order in terms of one 
parameter and the various classes of diagrams can be summed order by 
order. For example, we find that kD is given by the expression (13) 

kD = k~){ 1 + (3~b) 1/2 + (~b/2)(5 + 3 In 3) 

+ [3~b(ye + In 2 + (3/2) in 3 + (1/2) In ~b)] } + "" (1.3) 

where ~b = 4~a3c/3 is the sink volume fraction. Note the appearance of c In c 
terms; this is typical of the nonanalytic dependence beyond the lowest 
(x/-c) behavior that arises with 1/r divergence difficulties. 

Naturally, this perturbative point of view is not useful when ~b is not 
small, so approximate techniques must be used. The second technique we 
used is an effective medium procedure. To introduce it, consider the 
microscopic equation for the reactive diffusing density n(r, t): 

N 

3n(r, t)=DoV2n(r, t ) -  ~ Y d ~  b ( r -R ~)  cr~(~2~, t) (1.4) 
0t ~=1 

The summed term represents the boundary conditions on each sink's sur- 
face. That is, it accounts for the reaction between the diffusing species and 
the N sinks. The {o~} are Lagrange multipliers which are eliminated with 
the use of the boundary conditions. The expected macroscopic transport 
equation in this reaction diffusion system is 

ON(r' t ) -  D~ t ) -  fo dt' f dr' X(r-r ' '  t -  t') N(r'' (1.5) 

In Eq. (1.5) N(r, t )=  (n)(r ,  t) is the sink configuration average of the 
microscopic reactive density field n(r, t), and Z(r, t) is a "memory function" 
(self-energy) which accounts for the averaged modification of the diffusing 
density field arising from the reactive sinks. Expanding X in space and time 
gradients leads to the expected transport equation 

0N(r, t ) _  DV2N(r ' t ) -  ckDN(r, t) (1.6) 
0t 

where kD is the lowest order (in space-time gradients) term, kD= 
S~ dt ~ dr N(r, t), and 6D = D -- Do is the second-order term. ~176 In the effec- 
tive medium approach (11"14) we add to both sides of Eq. (1.4) an unknown 
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memory function W(r, t) and use it with the bare propagator Do V2 as the 
propagator in the effective medium. A relation of the form S -  W= f (W)  
is then generated. Setting W= S yields the identity f ( S )=  0, which is then 
truncated at some (low) order in scattering in the effective medium. Then a 
self-consistent solution for S, or for its moments kf and D, is calculated. 
The effective medium technique is known to give reasonable 
approximations over a wide range of concentration. 

In the following three sections we apply the ideas discussed here to 
investigate the three problems listed above: fluorescence quenching, surface 
diffusion, and ellipsoidal sinks. 

2. FLUORESCENCE Q U E N C H I N G  A N D  
ELECTRON S C A V E N G I N G  

A typical fluorescence quenching scheme is 

A hv A*, A* 1/~0,A, A * + Q  k j , A + Q  (I) 

A dilute species A is excited to A* which then deexcites by fluorescing at a 
rate 1/% or by quenching with rate constant k/. The lifetime of A* in the 
presence of quenchers is shortened to 1/~ according to 

1/~ = l/to + kj. (2.1) 

For quenching by dilute quenchers k/=k}~ is given by Eq. (1.2). This 
result with Eq. (2.1) leads to the Stern-Volmer intensity law, (2) Io/I= 
1 + ck}O)ro, which is linear in quencher concentration. 

As the quencher concentration increases the fluorophor spatial dis- 
tribution about a given quencher is modified by the presence of the other 
quenchers; the sink (here quencher) correlations must be accounted for. 
Then k s develops a concentration dependence of the form discussed in the 
Introduction. Because k/ increases faster than linear, Io/I (or %/r) shows 
upward curvature when plotted versus c; this is observed in some 
quenching experiments. (19) Several theoretical approaches to this quenching 
problem have appeared. (2~ 237 Of particular interest is quenching of charged 
fluorophores by charged quenchers. Many inorganic electron transfer reac- 
tions involve charged species, for example. (24) Also, if charged reactants are 
considered the important problem of electron scavenging by charged 
scavengers can be addressed. In this case there is no l/r0 process, so it just 
involves the calculation of ky. 

We have recently considered these problems using the perturbative 
and effective medium techniques discussed in the Introduction. (22,23) When 
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the reactants are charged a new length 8 becomes important. For  charged 
reactants Debye (25) found that k~ ) = 4rcD~, where 

I f? eflV(x) I 1 4 =  ~ dx (2.2) 

Here V(x) is the potential acting between the reactants. For  a Coulomb 
potential between oppositely charged ions a - ,  rc= fle2/4rCeo~r with e the 
electron's charge and er the dielectric constant. Typical values of gt/a range 
from 1 to about 40, so ~ can be much larger than the encounter length a. 

The perturbative calculation presented in Ref. 22 leads to 

k D = k(n~ 1 + (3~) 1/2 ] (2.3) 

where ~ =  47c~3c/3 is an effective volume fraction. Since ?(a can be large 
can be much larger than ~b. Thus, quencher concentration effects can enter 
at a much lower concentration than for neutral reactants. A corresponding 
effective medium calculation (22) leads to a result, which for high ~, is ckD = 
ck~l(6~), a quadratic dependence on quencher concentration. Naturally, we 
must view results in the regime ~>> 1 with caution. 

When we incorporate the effect of partial reaction control, that is, v = 
ko/k~ ) is finite, where recall that ko is the activation control rate constant 
(the contact rate constant), the calculations become very complex. We have 
carried out (23) a simplified effective medium calculation based on the 
following assumed form for the fluorophore density n(r) around a given 
quencher in the presence of a finite concentration of quenchers: 

E v a ] - e  -~(r ") n o (2.4) n(r)= 1 v + ( l + 2 a )  r 

where 2 = (kf/D) 1/2 and no is the bulk fluorescence concentration. This form 
introduces the idea that there is a finite chance of quenching before a 
specific fluorophore quencher pair can diffuse together, as becomes more 
likely for increasing quencher concentration. It is obtained by solution of a 
screened diffusion equation with the radiation boundary condition (4~ to 
account for finite v. Note that 1/2 is a length that characterizes the 
quenching power of the medium, relative to the rate of diffusion, that inter- 
venes between the specific f luorophore-quencher pair. (2~ Equation (2.4) is 
written for neutral reactants but an analogous result can be developed for 
charged reactants. When the rate constant ky is obtained from Eq. (2.4), by 
calculating the fluorophore flux into a given quencher an implicit equation 
of the form 2 = )~(~, v) results. (We use ~ because, for charged reactants, the 
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result based on Eq. (2.4) which produces 2 = ( r  v) becomes the same 
function of ~ as in the neutral case). 

When this implicit equation is solved for kf three regimes are found: 
First, when v is small, deviations from linear SV behavior are found to be 
small for all 3. As noted in the Introduction, v small is the limit where 
homogeneous kinetics is dominant, so concentration effects should not 
arise. 

Second, when v --+ oo (diffusion control) we obtain (basically) the same 
results as our perturbative and effective medium calculations. (22) In par- 
ticular, the first correction to the dilute behavior displayed in Eq. (2.3) is 
regained. Furthermore, ko also goes to the quadratic dependence found 
previously, though the coefficient is different. The approximation of the for- 
mal effective medium theory is not equivalent to the simple assumed form 
of the fluorophore density in Eq. (2.4). 

Third, for v ~> 1 (finite v) and high effective quencher concentration 
~>> 1, kr approaches the dilute, activation control result k f=koc .  In this 
case %/z appears to obey a linear SV law with slope given by the activation 
control rate constant k0. This allows the possibility of measuring reaction 
rates which would ordinarily be dominated by diffusion. Since the chemical 
information is contained in ko, this last regime may be of great use to, for 
example, studies of electron transfer reactions. Many ko's are so large that 
they are usually not measurable due to the diffusive step. 

So far we have only considered irreversible reactions. In electron trans- 
fer reactions a more typical scheme than scheme I would have as the 
quenching reaction I26) 

kD k 0 
A * + Q  ,k ~ ' A * Q  , A Q  (II) 

where the "quenching" step corresponds to the electron transfer step, and 
A*Q is the quencher fluorophore complex which can dissociate and diffuse 
apart. The dilute quencher rate constant is k~~ For 
v_ = ko/k~D small (large) k~~ ko(k~~ kD). At finite quencher concen- 
tration both k D and k D a r e  concentration dependent. These concentration 
dependences must be related since K A = k D / k _  D is the association 
equilibrium constant. 

In the Fuoss ~27) point of view the association constant K a is calculated 
on the basis of equilibrium considerations and yields KA = v~e -~v~a~, where 
v s = 4~a3/3 is the volume of one encounter pair and V(a) is the value of the 
potential at the encounter distance. From a dynamical point of view, adop- 
ted by Eigen, ~28) the rate constant k~~ D is calculated (for dilute quenchers), 
by solving the following diffusion problem. One quencher-fluorophore 
pair, with n(r = a )=  v~, diffusing apart to infinity such that n(r ~ ~ ) =  0. 
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This yields k D = 4nD~e~V(a)vs . The ratio kD/k D is then KA as given by 
Fuoss, and of course the dynamical quantity D cancels in the ratio. 

We have calculated k D at finite quencher concentration on the basis 
of a similar assumed form for n(r) used in Eq. (2.4) to obtain kD. (29) This 
yields a second implicit equation; when one is substituted in the other to 
obtain kD/k_D the correct equilibrium form results. We may then use our 
simple effective medium theory for the reversible reaction case with some 
confidence. 

The three cases of the irreversible reaction have their analogies here. 
For  v small k F is essentially kr (~ for v ~ ~ diffusion control is obtained and 
for v ~ 1, ~ large, k f ~ k o K A c  which corresponds to the dilute result with 
the reversible diffusion step preequilibrated before the electron transfer 
step. 

The ionic reactant problems present two difficulties in going beyond 
the lowest-order corrections to dilute behavior, such as given by Eq. (2.3). 
First, the diffusion flux now includes the long range force term - V  V. Thus, 
the diffusive propagator is not representable in a simple fashion. We have 
used a transformation of variables adopted by Flannery/3~ whereby, in the 
new variables, an ordinary diffusion equation is obtained but with a space- 
dependent diffusion "constant." Ignoring this spatial dependence does lead 
to the Smoluchowski-Debye dilute result for k(D ~ We use this scheme for 
all quencher concentration. This issue requires more careful treatment. 
Second, the effective medium approximation is not controlled: this is 
relevant to the neutral reactant calculations too. Fixman (31) has carried out 
simulations on the neutral sink problem which show that effective medium 
calculations are adequate up to rather high sink concentrations [~b~0(1)]. 
But in the ionic reactant case the effective volume fraction ~ can be much 
greater than 1 and there is no guidance as to the quality of the effective 
medium theory in this regime. Simulation of the ionic reactant problem 
would be very useful. 

We have concentrated on steady state results in this discussion. The 
initial value problem is also of interest to fluorescence quenching. Our 
calculations (22) show that the initial value problem has the following subtle 
feature. The time-dependent rate "constant" obtained from the 
Smoluchowski-Debye equation for dilute sinks is not consistent. Terms of 
higher order in concentration also contribute to the time-dependent rate; 
when these are included the time dependence of k~~ from the dilute 
result is exactly canceled and therefore the rate constant to this order is the 
same as the steady state rate. This point has been made before, t12'~3) 

Finally, we note that an assumption of our calculations is that the 
sinks are stationary. For  electron scavenging this is not a problem; 
however, for quenching there is no reason to expect that the quencher 
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mobility is smaller than the fluorophor mobility. When the quenchers are 
dilute, relative coordinates are appropriate, but for nondilute quenchers 
relative coordinates do not lead to a simplification of the problem. This 
remains as an outstanding problem. 

3. SURFACE REACTION RATES 

Reactions on surfaces are often catalyzed at specific surface sites such 
as edges and steps/5) Typically, the steps that influence the overall reaction 
rate are(32): (1) diffusion of the reactants to the surface, (2) adsorption onto 
the surface, (3)surface diffusion to active sites, (4)reaction at the site, 
(5) desorption, and (6) diffusion away from the surface. 

The role of surface diffusion to the active sites is not well understood 
in the above overall process. We have introduced a model that attempts 
to explore this feature of heterogeneous catalysis. We assume that the 
surface reactive sites are distributed randomly and idealize them as small 
absorbing circles. We then have a two-dimensional version of the reaction- 
diffusion problem. 

The steady-state two-dimensional reaction~liffusion system does not 
have a solution for dilute sinks; a collective (finite c) approach must be 
used from the outset. This can be done, but for the problem at hand it 
makes more sense to explicitly include the diffusion to and from the sur- 
face, which must occur. Thus a Langmuir adsorption~lesorption 
mechanism with rate coefficients k+ and k is incorporated in the surface 
diffusion equation. Once this is done, a "two-dimensional" steady state 
exists even for dilute sinks. We have carried out this calculation ~33) using 
the effective medium techniques developed for the three-dimensional 
reaction-diffusion system. 

For dilute sinks we find 

k~)=2rcDo/lln2[, Rc=k~)ue=20k+N/ (221n2)  (3.la) 

D / D o = l + q ) [ 2 + l / ( T e + l n 2 / 2 ) ]  ()o~ 1) (3.1b) 

and 

k~ ) = 4~Do)~, Rc = 4~bk+ N/2 (3.2a) 

D/Do = 1 + ~b//. (2 >> 1) (3.2b) 

In the above equations we have defined the surface fraction of reactive sites 
of radius "a" as ~b = rca2c, the dimensionless parameter .~2 = 

(k_ +k+N)/(Do/aZ), with N the bulk concentration of diffusing reactant 
and u e = k + N/  ( k_  + k + N). Note that 2 2 is the ratio of 
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adsorption/desorption rate to surface diffusion rate. In Eqs. (3.1) and (3.2) 
we introduce Rc, the loss rate of the reactant. When 2 is small, surface dif- 
fusion is rapid relative to the adsorption/desorption rate, and Rc increases. 
The modification of D for small 2 is linear in ~b, while for large 2 D is little 
changed from the zero reactive site result. 

The Jln 2[ behavior is characteristic of a two-dimensional problem; as 
2 becomes smaller the effect of two dimensions is more pronounced. This 
result contrasts with the three-dimensional diffusion control result ck~)= 
4gDoac. The interplay between surface saturation, favored by high bulk 
reactant concentration, and the relative rates of adsorption/desorption and 
surface diffusion measured by 22 produces this complex behavior. We note 
that the small 2 logarithmic behavior of k ~  was also found by Prager and 
Frisch (34~ for a lattice model analog of the continuum problem we have 
treated. 

At higher reactive site concentration c, the correlation among the sites 
is accounted for with the effective medium theory. (33) The principal con- 
clusions of this analysis are as follows. 

For )~2 large (22 >~ 1) the rate constant at concentration c relative to its 
dilute c value (kz~/k~ is essentially unchanged. So is DID o. For large 
values of 22 the role of surface diffusion is suppressed. Thus each reaction 
site acts quite independently since the adsorption/desorption process 
provides reactive material close to the reaction sites without need of surface 
diffusion. This leads to k~ and D being little changed from their dilute 
values k~ / and Do. 

In contrast, for )[2~ 1 kD/k~ ) shows a substantial enhancement as ~b 
increases (to about 30 for 22= 10 - 4  at ~b=0.6). The ratio D/Do also 
increases but much more gently (to about 1.5 for 22= 10 - 4  at ~b =0.6). 
When surface diffusion is an important mechanism for transporting reac- 
tive material to the catalytic sites, the correlations among the active sites 
cause a severe distortion in the reactive material density about a given site. 
This leads to the substantial rate constant increase we find. Note that the 
rate constant pertains to the entire sample; it yields, when multiplied by the 
bulk density, the rate of formation of the product. We therefore have found 
that a much better product yield per active site can be obtained by using 
sufficiently high values of ~b such that reactive site correlations are 
significant. 

As noted above, the adsorption/desorption terms play a crucial role in 
the calculation; without them a steady state does not exist for the reactive 
flux into one site. This problem is readily resolved by the observation that 
low site concentration does not correspond to one site in an infinite 
medium; the other sites contribute at any concentration and provide a 
large distance cutoff proportional to intersink spacing. Various authors (35~ 
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have solved the two-dimensional "single-site" problem by introducing a 
reflecting boundary condition at some distance b ~  1/x/-c large compared 
with the sink radius a. They obtain kD as given by Eq. (3.1a) for small 22 
with 22 now proportional to (a/b) 2. (Note that (a/b)2~c} since b ~  1/x/c). 
This result can be correctly obtained, and extended to larger ~b values, from 
the effective medium results discussed in this section. (36~ By letting 22--+ 0 
pure surface diffusion is obtained; but in the effective medium formalism 
the true (but as yet unknown) rate constant appears in the diffusive 
propagator. (33) This provides the required reactive screening, absent in a 
perturbative calculation, to lead to a steady state. To the extent that effec- 
tive medium calculations are accurate, we then obtain the pure two-dimen- 
sional rate constant as a function of surface coverage ~b. 

4. ELLIPSOIDS 

About 10 years ago Richter and Eigen ~6) suggested a mechanism for 
how a repressor molecule R locates a target site 0 on a DNA molecule. As 
a first step R diffuses through the solution (a cell interior) and binds non- 
specifically to the DNA molecule. R then slides along the surface until it 
finds the target site 0 and reacts. (Reference 7 summarizes the biochemical 
implications of this problem.) As long as the dissociation rate of R from the 
DNA surface is slow compared with the rate of surface sliding, the model is 
equivalent to the whole DNA molecule acting as a sink for the diffusing 
species R. The crucial experimental observation is that the rate constant 
k~ ) can exceed 101~ mo1-1 s -1. If k~ ) is calculated on the basis of a one 
step mechanism, where R diffuses directly to the target site 0 and reacts, 
then using k ~ ) =  4~Da, where a is an appropriate encounter length for R 
and 0 leads to k ~  107-108 1 mol l s 1 (7) 

Richter and Eigen (6) pointed out that a long thin sink [modeled as a 
long prolate ellipsoid of major (minor) semiaxis A(B)] has a diffusion-con- 
trolled rate constant 

k~ ~ = 4~DoA/ln(2A/B ) (A/B> 1) (4.1) 

Except for the (small) logarithmic correction, a long ellipsoid acts as if it 
were a sphere of radius A. The origin of this effect is the space-filling nature 
of diffusion; once close to the ellipsoid, a diffuser will sample the neigh- 
boring space extensively. The result of Eq. (4.1) then provides a mechanism 
for defeating diffusional limitation. For (A/B)~IO ~ a large rate enhan- 
cement relative to a spherical sink of the same total volume is predicted, 
and rates k ~ ) ~  10 l~ 1 mo1-1 s -~ can be achieved. 

From the result~ of Section 2 we can surmise that when the ellipsoid 
concentration effect must be accounted for, it will enter via an equivalent 

822/42/1-2-6 
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sphere volume fraction q~ = (41t/3) A 3c rather than the ellipsoid volume frac- 
tion ~e = (47t/3)AB2c. Since ~b = ~be(A/B) 2, materially dilute ellipsoids ~be~ 1 
may correspond to effective concentrated spheres ~b > 1. 

Both the rate coefficient kD and the diffusion coefficient D depend on 
~b~. Once again an effective medium theory (37) is used to obtain a formal 
expression for X(r), the memory function. This is expanded in space 
gradients to give k D and D and these equations are solved in a self-con- 
sistent fashion. An advantage of the multiple scattering formalism that we 
use is that the specific sink geometry does not have to be decided until late 
in the calculation. As long as a surface inverse can be evaluated the 
problem can be solved. For a prolate ellipsoid the Green's function of the 
modified Helmholtz equation can be written down in ellipsoidal 
coordinates, (38) and we have succeeded in inverting it. A solution of the 
resulting coupled implicit equations for arbitrary (A/B) ratio is possible but 
requires extensive numerical work. Fortunately, the interesting regime is 
(A/B)>> 1 and for this limit the analysis can be carried out analytically. 

We find that 

k D = [ 1  ~ 1 ] -1  
3 In [ (2z]/B) 2 ] k~) (4.2) 

The inverse factor is D/Do and it can produce a divergence in kD for ~be~ 1 
for (A/B) >> 1. 

Effective medium theories do predict divergences in transport 
properties. ~ Obviously, the rate ko cannot become infinite; such a 
divergence is an indication either that a new physical regime is reached, or 
the effective medium approximation is failing. More to the point here, we 
note that v=ko/k~ ~ is finite [ko is once again the intrinsic (contact) rate 
constant of reaction]. As (A/B) gets large so does k ~ A  and v is no 
longer large. So the diffusion control boundary condition fails. 

Reanalysis of the problem with finite v by use again of the radiation 
boundary condition (4~ to account for finite v in fact leads to the conclusion 
that D/Do does not diverge with ~b. Instead, ky~k~9~ with a small correction 
arising.from D/Do. It turns out that D/Do depends on the product 
(v--1)(B/A) 2. To obtain the diffusion control regime the condition is 
( v -  1 )(B/A)2>> 1, not v >> 1. Consideration of typical values for k o, A, and B 
then shows that the physically realistic case is v(B/A)2~I and we find 
[ ( D - D o ) / D o ] ~ e  (notch). Thus the modification to the diffusion coef- 
ficient is quite small. 

We conclude that for nondilute ellipsoids the rate is actually close to 
the dilute value, when the ellipsoids are very long (A/B) >> 1. This puts the 
Richter-Eigen observation on a sound basis since it is just for large (A/B) 
that we can no longer trust the dilute ellipsoid result. 
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